

MERI College of Engineering & Technology (MERI-CET)

Name of the Faculty	:	Er. Amit Kaushik
Discipline	:	Civil Engineering
Semester	:	4 TH
Subject (PEC-CEEL-310-G)	:	Prestress
Lesson Plan Duration AUG 2021)	:	15 Weeks (From MAY-

:

Work load (Lectures/Practical)

Per week (in hours)	Per	week	(in	hours)	
---------------------	-----	------	-----	--------	--

Lectures-02

WEEK	LECTURE	TOPIC COVERED
01 st	1 st	Introduction of Prestressing system- history Types, source, advantages and its limitations
-	2 nd	Prestressing Systems and Devices
	1 st	Materials properties- Constituents of Concrete and their Properties
02 nd	2 nd	Stress-Strain Curves for Concrete, Constituents of Prestressing Steel and their Properties
03 rd	1 st	Types of Prestressing Steel, Stress-Strain Curves for Prestressing Steel, Relaxation of Steel, Fatigue, Codal Provisions.
	2 nd	ASSIGNMENT 1
	1 st	Elastic Shortening, Pre-Tensioned & Post-Tensioned - Axial &
04 th	2 nd	Bending Members, Losses in Prestress - Friction, Anchorage Slip,
	1 st	Creep of Concrete, Shrinkage of Concrete, Relaxation of Steel, Total Time-Dependent Loss, Force Variation Diagram
05 th	2 nd	Total Time-Dependent Loss, Force Variation Diagram
_	1 st	ASSIGNMENT - 2
06 th	2 nd	Analysis for Shear- Introduction, Types of Cracks,
	1 st	Components of Shear Resistance, Modes of Failure, Effect
	2 nd	of Prestressing Force, Stress in an Uncracked Beam,
07 th		Design and Detailing Requirement for Shear, Design of Transverse Reinforcement.
08 th	1 st	Analysis for Torsion-Introduction, Crack Pattern Under Pure Torsion, Components of Resistance for Pure Torsion,

MERI College of Engineering & Technology (MERI-CET)

[1	
	2 nd	Modes of Failure, Effect of Prestressing Force for Torsion,
		Stresses in an Uncracked Beam, Design and Detailing
		Requirement for Torsion,
	1 st	
	1	Design of Longitudinal Reinforcement and Transverse Reinforcement.
9 th		Kennorcement.
	2 nd	Assignment -3
	1 st	Factors Influencing Deflections, Short Term Deflections of
	2 nd	Uncracked Members
10 th		Prediction of Long Term Deflections due to Creep and
		Shrinkage, Check for Serviceability Limit State of
	1 st	— Deflection. Deflection due to Gravity Loads and
11 th	-	Prestressing Force, Total Deflection, Determination of
		Moment of Inertia, Calculation of Crack Width, Method of Calculation, Limits of Crack Width.
		of Calculation, Limits of Clack width.
	2 nd	Analysis of Members under Axial and Flexural Load-
		Based on Stress, Force and Load Balancing Concept.
		Cracking Moment, Kern Point, Pressure Line, Analysis for
	1 st	Ultimate Strength, Variation of Stress in Steel Condition
12 th	1"	at Ultimate Limit State, Analysis of Rectangular Sections,
12		Flanged Sections, Partially Pre-Stressed Sections, Un-Bonded Post-Tensioned Beams.
		Uli-Bolided Post-Tensioned Beams.
	2 nd	
	1 st	Design of Members for Axial Tension, Flexure Type I and
13 th		Type II, Choice of Sections, Determination of Limiting
		Zone, Post-Tensioning in Stages, Magnel's Graphical
	2 nd	Method, Guyon's Method
	2""	
		ASSIGNMENT A
		/ASSIGNMENT - 4

MERI College of Engineering & Technology (MERI-CET)

14 th	1 st	Analysis and Design of Composite Beams – Methods of Achieving Continuity in Continuous Beams, Analysis for Secondary Moments, Concordant Cable and Linear Transformation, Calculation of Stresses, Principles of Design.	
	2 nd		
15 th	1 st	Design of Tension and Compression Members, Tanks, Pipes and Poles, Partial prestressing – definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.	